Deformable models with sparsity constraints for cardiac motion analysis
نویسندگان
چکیده
Deformable models integrate bottom-up information derived from image appearance cues and top-down priori knowledge of the shape. They have been widely used with success in medical image analysis. One limitation of traditional deformable models is that the information extracted from the image data may contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we introduce a new family of deformable models that are inspired from the compressed sensing, a technique for accurate signal reconstruction by harnessing some sparseness priors. In this paper, we employ sparsity constraints to handle the outliers or gross errors, and integrate them seamlessly with deformable models. The proposed new formulation is applied to the analysis of cardiac motion using tagged magnetic resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the poor image quality. Our new deformable models track the heart motion robustly, and the resulting strains are consistent with those calculated from manual labels.
منابع مشابه
Sparse Deformable Models with Application to Cardiac Motion Analysis
Deformable models have been widely used with success in medical image analysis. They combine bottom-up information derived from image appearance cues, with top-down shape-based constraints within a physics-based formulation. However, in many real world problems the observations extracted from the image data often contain gross errors, which adversely affect the deformation accuracy. To alleviat...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کامل4D deformable models with temporal constraints: application to 4D cardiac image segmentation
Segmentation of time series of 3D cardiac images is clinically used for the assessment of the mechanical function of the left ventricle. To take into account the 4D (3D+T) nature of those images, we propose to extend the deformable surface framework by introducing time-dependent constraints. Thus, in addition to computing an internal force for enforcing the regularity of the deformable model, p...
متن کاملSpace and Time Shape Constrained
The aim of this work is to automatically extract quantitative parameters from time sequences of 3D images (4D images) suited to heart pathology diagnosis. In this paper, we propose a framework for the reconstruction of the left ventricle motion from 4D images based on 4D deformable surface models. These 4D models are represented as a time sequence of 3D meshes whose deformation are correlated d...
متن کاملUnified Deterministic/Statistical Deformable Models for Cardiac Image Analysis
OF THE DISSERTATION Unified Deterministic/Statistical Deformable Models for Cardiac Image Analysis by Sharath Kumar Gopal Doctor of Philosophy in Computer Science University of California, Los Angeles, 2016 Professor Demetri Terzopoulos, Chair This thesis proposes to fully automate the shape and motion reconstruction of non-rigid objects from visual information using a unified deterministic/sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2014